Credit card fraud detection: A fusion approach using Dempster-Shafer theory and Bayesian learning

نویسندگان

  • Suvasini Panigrahi
  • Amlan Kundu
  • Shamik Sural
  • Arun K. Majumdar
چکیده

We propose a novel approach for credit card fraud detection, which combines evidences from current as well as past behavior. The fraud detection system (FDS) consists of four components, namely, rule-based filter, Dempster–Shafer adder, transaction history database and Bayesian learner. In the rule-based component, we determine the suspicion level of each incoming transaction based on the extent of its deviation from good pattern. Dempster–Shafer’s theory is used to combine multiple such evidences and an initial belief is computed. The transaction is classified as normal, abnormal or suspicious depending on this initial belief. Once a transaction is found to be suspicious, belief is further strengthened or weakened according to its similarity with fraudulent or genuine transaction history using Bayesian learning. Extensive simulation with stochastic models shows that fusion of different evidences has a very high positive impact on the performance of a credit card fraud detection system as compared to other methods. 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...

متن کامل

Combination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions

As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...

متن کامل

Designing a Home Security System using Sensor Data Fusion with DST and DSMT Methods

Today due to the importance and necessity of implementing security systems in homes and other buildings, systems with higher certainty, lower cost and with sensor fusion methods are more attractive, as an applicable and high performance methods for the researchers. In this paper, the application of Dempster-Shafer evidential theory and also the newer, more general one Dezert-Smarandache theory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information Fusion

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009